Heteroclinic dynamics in the nonlocal parametrically driven nonlinear Schrödinger equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heteroclinic dynamics in the nonlocal parametrically driven nonlinear Schrödinger equation

Faraday waves are described, under appropriate conditions, by a damped nonlocal parametrically driven nonlinear Schrödinger equation. As the strength of the applied forcing increases this equation undergoes a sequence of transitions to chaotic dynamics. The origin of these transitions is explained using a careful study of a two-mode Galerkin truncation and linked to the presence of heteroclinic...

متن کامل

Integrable nonlocal nonlinear Schrödinger equation.

A new integrable nonlocal nonlinear Schrödinger equation is introduced. It possesses a Lax pair and an infinite number of conservation laws and is PT symmetric. The inverse scattering transform and scattering data with suitable symmetries are discussed. A method to find pure soliton solutions is given. An explicit breathing one soliton solution is found. Key properties are discussed and contras...

متن کامل

Chaoticons described by nonlocal nonlinear Schrödinger equation

It is shown that the unstable evolutions of the Hermite-Gauss-type stationary solutions for the nonlocal nonlinear Schrödinger equation with the exponential-decay response function can evolve into chaotic states. This new kind of entities are referred to as chaoticons because they exhibit not only chaotic properties (with positive Lyapunov exponents and spatial decoherence) but also soliton-lik...

متن کامل

Temporally-Periodic Solitons of the Parametrically Driven Damped Nonlinear Schrödinger Equation

Temporally-periodic solitons of the parametrically driven damped nonlinear Schrödinger equation – p.

متن کامل

Rogue waves in the two dimensional nonlocal nonlinear Schrödinger equation and nonlocal Klein-Gordon equation

In this paper, we investigate two types of nonlocal soliton equations with the parity-time (PT) symmetry, namely, a two dimensional nonlocal nonlinear Schrödinger (NLS) equation and a coupled nonlocal Klein-Gordon equation. Solitons and periodic line waves as exact solutions of these two nonlocal equations are derived by employing the Hirota's bilinear method. Like the nonlocal NLS equation, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physica D: Nonlinear Phenomena

سال: 2002

ISSN: 0167-2789

DOI: 10.1016/s0167-2789(01)00368-2